10,10'-Dimethyl-9,9'-biacridine Acting as a Novel Organic Outer-Sphere Electron-Transfer Reagent

Shunichi FUKUZUMI* and Yoshihiro TOKUDA

Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

Rates of Electron-transfer (ET) reactions from 10,10'-dimethyl-9,9'-biacridine [(AcrH)₂] to various inorganic and organic one-electron oxidants depend solely on the one-electron reduction potentials of the oxidants irrespective of the size of the oxidants, indicating that (AcrH)₂ acts as a novel outer-sphere organic ET reagent.

The outer-sphere mechanism for electron-transfer (ET) reactions has been extremely useful and successful in predicting the ET rates of a number of inorganic redox reagents in terms of the Marcus simple and classical theory. 1) This concept requires no specific knowledge of the transitionstate structure, since rates of the outer-sphere ET reactions having nonbonded transition states can be described only in terms of the thermodynamic parameters of each independent reductant and oxidant. contrast, transition-state structures play important roles in mechanistic thinking in organic redox chemistry, since bonding is so important in transition states of organic redox reactions. Thus, well documented cases of outer-sphere ET reactions involving organic redox reagents are rare as Eberson and Shaik have recently pointed out. 2,3 We report herein that there is an exception for such generalization and that 10,10'-dimethyl-9,9'-biacridine [(AcrH)2] acts as a novel organic outersphere ET reagent.

Upon mixing of $(AcrH)_2^{4}$ with a neutral organic oxidant (Ox) such as 7,7,8,8-tetracyano-p-quinodimethane (TCNQ), tetracyanoethylene (TCNE), or p-benzoquinone derivatives in deaerated MeCN at 298 K, Ox is readily reduced to the corresponding radical anion (Ox^{-1}) , accompanied by the formation of 10-methylacridinium ion $(AcrH^{+}).5-7$ The stoichiometry is given by Eq. 1,5,7) where $(AcrH)_2$ acts as a two-electron donor in the one-electron-reduction of Ox. The rates of formation of Ox^{-1} obey second-order kinetics, showing the first-order dependence on each reactant concentra-

Me

H H

$$+ 20x$$
 $+ 20x^{-}$

Me

(AcrH⁺)

tion,⁸⁾ indicating that the initial electron transfer from $(AcrH)_2$ to 0x is the rate-determining step, followed by facile cleavage of the C-C bond of $(AcrH)_2^+$ to yield $AcrH^+$ and $AcrH^-$ (Scheme 1).⁹⁾ The second electron transfer from $AcrH^-$ to 0x (Scheme 1) may be much faster than the initial

Scheme 1.

electron transfer, since the one-electron oxidation potential of AcrH· is largely negative (E_{OX}^0 = -0.43 V \underline{vs} . SCE).⁶⁾ In such a case the observed second-order rate constant (k_{Obs}) corresponds to $2k_{et}$. Such electron transfer also takes place in the case of inorganic one-electron oxidants; CoTPP+ (TPP = tetraphenylporphyrin) and ferrocenium ions.

On the other hand, $(AcrH)_2$ can quench the fluorescence of 9,10-dicyanoanthracene and pyrene as well as the emission of $[Ru(bpy)_3]^{2+*}$ (* denotes the excited state) by electron transfer (Eq. 2 in the case of

 $[{
m Ru(bpy)}_3]^{2+*})$. The rate constants $({
m k}_{et})$ for the photoinduced ET reactions of $({
m AcrH})_2$ were determined by quenching experiments of the fluorescence of the aromatic compounds and luminescence of $[{
m Ru(bpy)}_3]^{2+*}$ by $({
m AcrH})_2$ in MeCN at 298 K as described previously. 6,10 The ${
m k}_{et}$ values for both thermal and photoinduced ET reactions are listed in Table 1, together with the one-electron reduction potentials $({
m E}_{red}^0)$ of the oxidants. 11

The plot of log k_{et} <u>vs</u>. E^0_{red} in Fig. 1 demonstrates a typical dependence of the rate constant on E^0_{red} for outer-sphere ET reactions; the log k_{et} value increases linearly with an increase in the E^0_{red} value with a slope of 1/(2.3RT) (= 16.9 at 298 K) to reach a diffusion limited value

Table 1. Rate Constants (k_{et}) for Electron Transfer from $(Acr H)_2$ to Various Organic and Inorganic Oxidants in MeCN at 298 K

No.	. Oxidant	E_{red}^0 vs. SCE / V^a)	k_{et} / $dm^3 mol^{-1} s^{-1}$
1	p-bromanil	0.00	2.3
2	<u>p</u> -chloranil	0.01	2.4
3	Ph ₃ C ⁺	0.21	1.8 x 10 ³
4	TCNQ	0.19	3.8×10^3
5	TCNE	0.22	3.8×10^3
6	2,3-dicyano-p-benzoquinone	0.28	1.1×10^4
7	$[Fe(\underline{n}-BuC_5H_4)_2]^+$	0.25	2.0×10^4
	$[Fe(MeC_5II_4)_2]^{+}$	0.26	2.1×10^4
9	$[Fe(C_5H_5)(\underline{n}-BuC_5H_4)]^+$	0.31	8.1×10^4
10	$[Fe(C_5H_5)(\underline{t}-Amy1C_5H_4)]^+$	0.32	1.1×10^{5}
	CoTPP ⁺	0.35	1.8×10^{5}
12	[Fe(C ₅ H ₅) ₂] ⁺	0.37	2.3×10^{5}
	[Fe(C ₅ H ₅)(HgClC ₅ H ₄)] [†]	0.36	2.8×10^{5}
	$[Ru(bpy)_3]^{2+}$	0.78	5.3×10^9
	pyrene	1.23	1.6×10^{10}
16	9,10-Dicyanoanthracene	1.91	2.0×10^{10}

a) Ref. 11.

 $(k_{et} = 2.0 \times 10^{10} dm^3 mol^{-1} s^{-1}).$ The E_{red}^0 value at the intersection of the two broken lines in Fig. 1 corresponds approximately to the one-electron oxidation potential of $(AcrH)_2$ $(E_{OX}^0 = 0.59 \text{ V})$, which is smaller than that of the corresponding monomer; 10-methyl-9,10-dihydroacridine (Acr H_2 : $E_{ox}^0 = 0.80 \text{ V}$).⁶ The k_{et} values for both photoinduced and thermal ET reactions of $(Acr H)_2$ depend solely on the E_{red}^0 values, irrespective of the very different size (bulkiness) or type of oxidants including organic and inorganic compounds (Table 1). Thus, the dimer $[(AcrH)_2]$ acts as not only a unique two-electron donor without release of a proton (Eq. 1) but also

Fig. 1. Plot of log $k_{\mbox{et}}$ \underline{vs} . $E_{\mbox{red}}^0$ for the ET reactions of $(\mbox{AcrH})_2$ in MeCN at 298 K. The numbers refer to oxidants in Table 1.

a novel outer-sphere ET organic reagent. The outer-sphere mechanism may be only the choice left for the ET reactions of $(AcrII)_2$, since the steric hindrance of the dimer, together with the facile cleavage of the C-C bond upon the one-electron oxidation (Scheme 1) may prevent any specific orbital interaction with oxidants. In contrast, it has well been established that the corresponding monomer $(AcrH_2)$ acts as a donor of hydride ion (two electrons and a proton) instead of two electrons. 6,7

The present work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References

- 1) R. A. Marcus, Annu. Rev. Phy. Chem., 15, 155 (1964); R. D. Cannon, "Electron Transfer Reactions," Butterworths, London (1980).
- 2) L. Eberson and S. S. Shaik, J. Am. Chem. Soc., 112, 4484 (1990).
- 3) For outer-sphere ET reactions of organometallic compounds; S. Fukuzumi, C. L. Wong, and J. K. Kochi, J. Am. Chem. Soc., 101, 5593 (1979); S. Fukuzumi and T. Kitano, Inorg. Chem., 29, 2558 (1990).
- 4) The dimer (Acrii)₂ was prepared by the one-electron reduction of Acrii⁺ by hexamethylditin; S. Fukuzumi, T. Kitano, and K. Mochida, J. Am. Chem. Soc., 112, 3246 (1990).
- 5) The formation of OX^- and $AcrH^+$ was followed by measuring the electronic spectra as described in Refs. 6 and 7.
- 6) S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., 109, 305 (1987).
- 7) S. Fukuzumi, Y. Kondo, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1984, 673; Chem. Lett., 1983, 485.
- 8) Rates of the ET reactions from $(AcrH)_2$ to 0x and ferrocenium ions were determined by the increase and decrease in the absorbance due to $0x^-$ and ferrocenium ions by using a stopped-flow spectrophotometer, respectively.
- 9) S. Fukuzumi, T. Kitano, and M. Ishikawa, J. Am. Chem. Soc., 112, 5631 (1990).
- 10) S. Fukuzumi, T. Kitano, and K. Mochida, Chem. Lett., 1990, 1741.
- 11) The E^0_{red} values were determined by cyclic voltammetry and some of them were reported previously; see: Ref. 6; S. Fukuzumi, S. Mochizuki, and T. Tanaka, Inorg. Chem., 28, 2459 (1989). For the E^0_{red} value of Ph_3C^+ ; M. R. Wasielewski and R. Breslow, J. Am. Chem. Soc., 98, 4222 (1976). The E^0_{red} values of the excited states of $[Ru(bpy)_3]^{2+}$, pyrene, and 9,10-dicyanoanthracene are obtained by adding the zero-zero excitation energies to the E^0_{red} values of the ground states. E^0_{red} values of the ground states.

(Received August 17, 1991)